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Permutations

Permutation statistics

For π = π1 π2 . . . πd a permutation: 3 1 5 7 4 2 6

• Des(π) := {i ∈ [d − 1] : πi > πi+1} {1,4,5}

• des(π) := |Des(π)| 3

• maj(π) :=
∑

i∈Des(π)

i 1+4+5=10

• comaj(π) :=
∑

i∈Des(π)

(d − i) 6+3+2=11
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Permutations

Eulerian polynomials

The dth Eulerian polynomial is Ad(z) :=
∑
π∈Sd

zdes(π).

1 2 3 1 3 2 3 2 1
2 1 3
2 3 1 A3(z) = 1 + 4z + z2

3 1 2

A generating function involving Eulerian polynomials:∑
n≥0

(n + 1)dzn =
Ad(z)

(1− z)d+1

Weighted Ehrhart Theories



Background Classical Ehrhart theory The first weighting The second weighting

Posets

Posets

Π = (P,⪯) such that for all p, q, r ∈ P:

• p ⪯ p

• p ⪯ q and q ⪯ p =⇒ p = q

• p ⪯ q and q ⪯ r =⇒ p ⪯ r

q covers p if p ≺ q and if there is no r
such that p ≺ r ≺ q.

Hasse diagram:
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Posets

Linear extensions and natural labelings

Fix a labeling of Π, i.e. a bijection ω : P → [n]. The linear
extensions of the labeled poset are the order-preserving maps

L(Π) := {σ ∈ Sn : σ(ω(p)) < σ(ω(q)) if p ≺ q} .

A labeling is natural if the identity is a linear extension.
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Posets

An example!

Natural labeling:

1

2

3 4

Linear extensions:

L(Π) = {1234, 1243}
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Graphs

Proper colorings

A proper n-coloring of a graph
G = (V ,E ) is a function
c : V → [n] such that

c(v) ̸= c(w) if {v ,w} ∈ E .

The chromatic number χ(G ) of
G is the smallest positive integer
such that G has a proper
χ(G )-coloring.

Example: Non-example:

χ(C5) = 3
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Graphs

The chromatic polynomial

The number of proper n-colorings of a graph G agrees with a
polynomial of degree |V |, called the chromatic polynomial χG (n)
of G .

χG (n) =

|V |∑
k=χ(G)

αk · n(n − 1) · · · (n − k + 1),

where αk is the number of partitions of V into k independent sets.
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Graphs

The chromatic polynomial of a tree

If T is a tree on d vertices, then χT (n) = n(n − 1)d−1.

n − 1

n(n − 1)d−2
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Graphs

The chromatic symmetric function

Stanley’s symmetric function generalization:

XG (x1, x2, . . .) =
∑

proper colorings
c:V→Z+

x
|c−1(1)|
1 x

|c−1(2)|
2 x

|c−1(3)|
3 . . .

XP4(x1, x2, 0, 0, . . .) = 2x21x
2
2 XS4(x1, x2, 0, 0, . . .) = x31x2 + x1x

3
2
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Graphs

The chromatic symmetric function in different bases

(Augmented) monomial basis

XG (x1, x2, . . .) =
∑
λ⊢|V |

αλm̃λ,

where αλ = number of partitions of type λ of V into independent sets and
m̃λ = r1!r2! · · ·mλ (ri = number of parts of λ equal to i)

Power sum basis
XG (x1, x2, . . .) =

∑
S⊆E

(−1)|S|pλ(S),

where λ(S) = vector of sizes of connected components of (V , S)

Elementary basis

XG (x1, x2, . . .) =
∑
λ⊢|V |

cλeλ,

is such that
∑

λ with
j parts

cλ = number of acyclic orientations of G with j sinks
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Graphs

Conjectures about XG (x1, x2, . . .)

1. [Stanley] For trees S and T , XS = XT ⇐⇒ S ∼= T .

2. [Stanley] Chromatic symmetric functions of claw-free graphs
are Schur positive.

3. [Stanley-Stembridge] Chromatic symmetric functions of
incomparability graphs of (3 + 1)-free posets are e-positive.
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Graphs

Specializations of XG (x1, x2, . . .)

XG (x1, x2, . . .)

XG (q, q
2, . . . , qn, 0, 0, . . .)

XG (1, . . . , 1︸ ︷︷ ︸
n times

, 0, 0, . . .) = χG (n)

Conjecture. (Loehr-Warrington) The
principal specialization already
distinguishes non-isomorphic trees!
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Lattice polytopes

Lattice polytopes

A polytope is the convex hull of finitely many points in Rd ,
equivalently a bounded intersection of finitely many halfspaces.

For P a lattice polytope (i.e. with vertices in Zd), we consider

ehrP(n) =
∣∣∣nP ∩ Zd

∣∣∣ .
Example:

∆ =

(0, 0)

(1, 0)

(0, 1) ehr∆(n) = |{(x , y) ∈ Z2 : x , y ≥ 0, x + y ≤ n}|

=

(
n + 2

2

)
=

1

2
n2 +

3

2
n + 1
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Lattice polytopes

Ehrhart polynomials and series

For any d-dimensional lattice polytope P ⊆ Rd , ehrP(n) is a
polynomial of degree d , called the Ehrhart polynomial.

The Ehrhart series of P is its generating function

EhrP(z) =
∑
n≥0

ehrP(n)z
n.

Observe
EhrP(z) =

∑
x∈cone(P)∩Zd+1

zxd+1 ,

where cone(P) = {(tx , t) : x ∈ P, t ≥ 0}.
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Lattice polytopes

Ehrhart theory of unimodular simplices

If ∆ is a d-dimensional unimodular simplex with k missing facets
(for some 0 ≤ k ≤ d + 1),

Ehr∆(z) =
zk

(1− z)d+1
.

Proof. The unique point in the
“fundamental parallelepiped” of cone(∆) is

∑(
vi
i

)
,

where the sum ranges over the k vertices
of ∆ that are opposite the missing facets.

cone((1, 2]) :

0
0

1

1

2

2

3

3

4

4

5

5

6

6
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Lattice polytopes

Ehrhart theory of general lattice simplices

cone((1, 3]) :

0
0

1

1

2

2

3

3

4

4

5

5

6

6

Ehr∆(z) =

∑
x∈Π(∆)∩Zd+1 zxd+1

(1− z)d+1

=
2z

(1− z)2
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Lattice polytopes

h∗-polynomials of lattice polytopes

1. [Nonnegativity] If P is a d-dimensional lattice polytope,

EhrP(z) =
h∗P(z)

(1− z)d+1
,

where h∗P(z) is a polynomial with nonnegative integer
coefficients, called the h∗-polynomial.

2. [Monotonicity] If P,Q are lattice polytopes and P ⊆ Q,

h∗P(z) ≤ h∗Q(z),

coefficient-wise.
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Rational polytopes

Rational polytopes and Ehrhart quasipolynomials

If P ⊆ Rd has rational vertices, say in 1
qZ

d for q ≥ 1 minimal,

|nP ∩ Zd |

agrees with a quasipolynomial in n whose period divides q.

|nP∩Zd | =


9

8
n2 +

9

4
n + 1 if n ≡ 0 mod 2

9

8
n2 +

3

2
n +

3

8
if n ≡ 1 mod 2
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Rational polytopes

Ehrhart series of rational simplices

cone([1/2, 5/2]) :

0
0

1

1

2

2

3

3

4

4

5

5

6

6

Ehr∆(z) =

∑
x∈Π(∆)∩Zd+1 zxd+1

(1− zq)d+1

=
1 + 2z + 3z2 + 2z3

(1− z2)2

Weighted Ehrhart Theories



Background Classical Ehrhart theory The first weighting The second weighting

Rational polytopes

h∗-polynomials of rational polytopes

1. [Nonnegativity] If P is a d-dimensional rational polytope with
denominator q,

EhrP(z) =
h∗P(z)

(1− zq)d+1
,

where h∗P(z) is a polynomial with nonnegative integer
coefficients, called the h∗-polynomial.

2. [Monotonicity] If P,Q are rational polytopes of the same
denominator and P ⊆ Q,

h∗P(z) ≤ h∗Q(z),

coefficient-wise.
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Combinatorial connections

Unit cubes

The d-dimensional unit cube has a disjoint unimodular
triangulation

[0, 1]d =
⋃
σ∈Sd

{0 ≤ xσ1 ≤ · · · ≤ xσd
≤ 1 : xσi < xσi+1 if i ∈ Des(σ)},

so

Ehr[0,1]d (z) =

∑
σ∈Sd z

des(σ)

(1− z)d+1

=⇒
∑
n≥0

(n + 1)dzn =
Ad(z)

(1− z)d+1
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Combinatorial connections

Order polytopes

The order polytope of a poset Π = ([d ],⪯) is

O(Π) = {(x1, . . . , xd) ∈ [0, 1]d : xi ≤ xj if i ⪯ j},

which has a disjoint unimodular triangulation

O(Π) =
⋃

σ∈L(Π)

{
0 ≤ xσ1 ≤ . . . ≤ xσd

≤ 1, xσi < xσi+1 if i ∈ Des(σ)
}
.

Therefore,

EhrO(Π)(z) =

∑
σ∈L(Π) z

des(σ)

(1− z)d+1
.
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Combinatorial connections

Order polytopes, continued

The Negative Binomial Theorem implies

ehrO(Π)(n) =
∑

σ∈L(Π)

(
n + d − des(σ)

d

)

and Ehrhart-Macdonald reciprocity implies

ehrO(Π)◦(n) =
∑

σ∈L(Π)

(
n + des(σ)− 1

d

)
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Combinatorial connections

Proper colorings as lattice points

A coloring c : [d ] → [n] of G = ([d ],E ) can be thought of as a
point

(c(1), . . . , c(d)) ∈ Zd .

The proper n-colorings of G are points in(
(0, n + 1)d ∩ Zd

)
\
(⋃

HG

)
,

where HG is the graphical hyperplane arrangement

HG = {xi = xj : {i , j} ∈ E} .
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Combinatorial connections

Proper colorings as lattice points, continued

Consider the path on two vertices, P2 =

5-colorings of P2: Proper 5-colorings of P2:

0
0

1

1

2

2

3

3

4

4

5

5

6

6

0
0

1

1

2

2

3

3

4

4

5

5

6

6
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Combinatorial connections

Proper colorings as lattice points, continued

(
(0, n + 1)d ∩ Zd

)
\ (

⋃
HG ) has a region for each acyclic

orientation ρ of G , given by

(0, n + 1)d ∩

 ⋂
(i ,j)∈ρ

{xi < xj}

 .

The region corresponding
to ρ contains the proper
colorings of G that “obey”
ρ, i.e. for which
c(i) < c(j) if (i , j) ∈ ρ.

c(1) < c(2)

c(1) > c(2)
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Combinatorial connections

The chromatic polynomial is a sum of Ehrhart polynomials

Each region is the (n + 1)st dilate of the open order polytope of
the poset induced by ρ, which we call Πρ, therefore

χG (n) =
∑

ρ∈A(G)

ehrO(Πρ)◦(n + 1)

=
∑

ρ∈A(G)

∑
σ∈L(Πρ)

(
n + des(σ)

d

)
.

The linear extensions are of a natural labeling of the poset, not the vertex
labels.

Weighted Ehrhart Theories



Background Classical Ehrhart theory The first weighting The second weighting

Combinatorial connections

An example: the path on 3 vertices
Acyclic Orientation ρ Induced Poset Πρ Linear Extensions L(Πρ)

123

123, 213

123, 132

123

χP3(n) = 4

(
n

3

)
+ 2

(
n + 1

3

)
= n(n − 1)2
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Combinatorial connections

Leading questions

1. Can we introduce weights to our lattice points so that
these combinatorial connections (to posets, graphs, etc.)
will generalize?

2. What kind of weights can we introduce so that classical
Ehrhart results (nonnegativity, monotonicity, etc.) will
generalize?
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The first weighting

Matthias Beck Andrés R. Vindas Meléndez
San Francisco State University University of California, Berkeley
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The big picture

Stanley’s chromatic symmetric
function XG (x1, x2, . . .):

• Distinguishes some (all?)
non-isomorphic trees

Chromatic polynomial χG (n):

• Polytopes perspective

• Deletion-contraction

• Does not distinguish trees

XG (x1, x2, . . .)

χG (q, n)

χλ
G (q, n)

χG (n)
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q-binomial coefficients

The q-integer:

[n]q = 1 + q + q2 + · · ·+ qn−1

The q-binomial coefficient:[
k + ℓ

k

]
q

:=
[k + ℓ]q!

[k]q![ℓ]q!
=

[k + ℓ]q[k + ℓ− 1]q · · · [k + 1]q
[ℓ]q[ℓ− 1]q · · · [1]q

q-analog of Pascal’s identity:[
k + ℓ

k

]
q

= qk
[
k + (ℓ− 1)

k

]
q

+

[
(k − 1) + ℓ

k − 1

]
q
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q-binomial coefficients, continued

A combinatorial interpretation:[
k + ℓ

k

]
q

=
∑

µ∈R(k,ℓ)

q|µ|

k︷ ︸︸ ︷
ℓ


Negative q-binomial theorem:

1

(1− z)(1− qz)(1− q2z) · · · (1− qdz)
=

∑
n≥0

[
n + d

d

]
q

zn
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q-analog Ehrhart theory

q-analog Ehrhart theory

Theorem. (Chapoton) If P ⊆ Rd is a d-dimensional lattice
polytope and λ : Zd → Z is a linear form that is nonnegative on
the vertices of P,

ehrλP(q, n) =
∑

x∈nP∩Zd

qλ(x)

agrees with a polynomial ẽhr
λ

P(q, x) ∈ Q(q)[x ], evaluated at

x = [n]q := 1 + q + q2 + · · ·+ qn−1.

If λ((x1, . . . , xd)) = x1 + · · ·+ xd , we omit it.

We are ignoring a condition called “genericity” that is needed, but we will not have to worry about it for the
polytopes we are working with!
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q-analog Ehrhart theory

q-analog Ehrhart series of lattice simplices

cone((1, 3]) :

0
0

1

1

2

2

3

3

4

4

5

5

6

6

Ehrλ∆(q, z) =

∑
x∈Π(∆)∩Zd+1 qλ((x1,...,xd ))zxd+1∏

v (1− qλ(v)z)

=
q2z + q3z

(1− qz)(1− q3z)
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q-analog Ehrhart theory

An example of ẽhr!

P = conv{(0, 0), (1, 0), (1, 1), (2, 1)}

0
0

1

1

2

2

EhrP (q, z) =
1

(1 − z)(1 − qz)(1 − q2z)
+

q3z

(1 − qz)(1 − q2z)(1 − q3z)

=
1 − q3z2

(1 − z)(1 − qz)(1 − q2z)(1 − q3z)

ẽhrP(q, x) =
q4 − q3

q + 1
x3 +

3q3 − q2

q + 1
x2 +

3q2 + q

q + 1
x + 1
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q-analog Ehrhart theory

q-analog Ehrhart theory of unit cubes
Using the same triangulation of the d-dimensional unit cube

[0, 1]d =
⋃
σ∈Sd

{0 ≤ xσ1 ≤ · · · ≤ xσd
≤ 1 : xσi < xσ i+1 if i ∈ Des(σ)},

we compute its q-analog Ehrhart series

Ehr[0,1]d (q, z) =

∑
σ∈Sd q

comaj(σ)zdes(σ)

(1− z)(1− qz) · · · (1− qdz)
.

This yields the Euler-Mahonian joint distribution of (des,maj):

∑
n≥0

[n + 1]dqz
n =

∑
σ∈Sd q

maj(σ)zdes(σ)

(1− z)(1− qz) · · · (1− qdz)
.
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q-analog Ehrhart theory

q-analog Ehrhart theory of order polytopes

The q-analog Ehrhart series of the order polytope O(Π) is

EhrO(Π)(q, z) =

∑
σ∈L(Π) q

comaj(σ)zdes(σ)

(1− z)(1− qz) · · · (1− qdz)
.

Therefore,

ehrO(Π)(q, n) =
∑

σ∈L(Π)

qcomaj(σ)

[
n + d − des(σ)

d

]
q

.

Observe [n + k]q = qk [n]q + [k]q and [n − k]q =
[n]q−[k]q

qk
, so

ẽhrO(Π)(q, x) has degree d and [d ]q! · ẽhrO(Π)(q, x) ∈ Z(q)[x ].
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Combinatorial connections

A q-analog connection to graph colorings

XG (q, q
2, . . . , qn, 0, . . .) =

∑
proper

c:[d ]→[n]

q|c
−1(1)|+2|c−1(2)|+···+n|c−1(n)|

counts q raised to the sum of the colors of each vertex for each
proper coloring, which is

χG (q, n) :=
∑

ρ∈A(G)

ehrO(Πρ)◦(q, n + 1).

Therefore,

XG (q, q
2, . . . , qn, 0, . . .) =

∑
ρ∈A(G)

∑
σ∈L(Πρ)

q(
d+1
2 )−comaj(σ)

[
n + des(σ)

d

]
q
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Combinatorial connections

A (sort of boring) example

The acyclic orientations of the complete graph Kd are the total
orderings of the vertices, which each have the chain as their
induced poset.

χKd
(q, n) = d! · q(

d+1
2 )

[n
d

]
q

ρ = Πρ =

1

2

3

4

L(Πρ) = {1234}
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Combinatorial connections

Some examples of χT (q, n) in the “h∗-basis”

8q10
[n
4

]
q
+ (4q9 + 6q8 + 4q7)

[
n + 1

4

]
q

+ 2q6
[
n + 2

4

]
q

8q10
[n
4

]
q
+ (5q9 + 4q8 + 5q7)

[
n + 1

4

]
q

+ (q7 + q5)

[
n + 2

4

]
q
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Combinatorial connections

The q-analog chromatic polynomial

There exists a polynomial χ̃G (q, x) ∈ Q(q)[x ], which we call the
q-analog chromatic polynomial, such that

χ̃G (q, [n]q) = χG (q, n)
(
= XG (q, q

2, , qn, 0, . . .)
)
.

Theorem.

χ̃G (q, x) = qd
∑

flats S⊆E

µ(∅, S)
∏

λi∈λ(S)

1− (1 + (q − 1)x)λi

1− qλi

Weighted Ehrhart Theories
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Combinatorial connections

Some examples of [d ]q! · χ̃T (q, x)

(2q8 + 4q7 + 6q6 + 4q5 + 8q4)x4+

(−6q8 − 10q7 − 18q6 − 18q5 − 20q4)x3+

(4q8 + 10q7 + 20q6 + 22q5 + 16q4)x2+

(−4q7 − 8q6 − 8q5 − 4q4)x

(q9 + 6q7 + 4q6 + 5q5 + 8q4)x4+

(−q9 − 3q8 − 14q7 − 14q6 − 21q5 − 19q4)x3+

(3q8 + 12q7 + 18q6 + 24q5 + 15q4)x2+

(−4q7 − 8q6 − 8q5 − 4q4)x

Conjecture. The leading coefficient distinguishes non-isomorphic
trees.
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Combinatorial connections

The leading coefficient

Theorem. The leading coefficient of [d ]q! · χ̃G (q, x) is∑
ρ∈A(G)

∑
σ∈L(Πρ)

qmaj(σ).

For certain “tree posets” Π and permutation statistics stat,

estatq (Π) =
∑

σ∈L(Π)

qstat(σ)

is well-studied:

• [Björner-Wachs] rooted tree posets, inv

• [Stanley] ribbon posets, inv

• [Peterson-Proctor] d-complete posets, maj

• [Garver-Grosser-Matherne-Morales, Park] mobile tree posets, maj and inv
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Combinatorial connections

Open questions!

1. Can these results on “q-analog number of linear extensions”
of various tree posets be applied to distinguish the leading
coefficients for certain classes of trees?

2. Atkinson gave an algorithm to efficiently compute the number
of linear extensions of a tree poset, and
Garver-Grosser-Matherne-Morales generalized it for e invq . Is
there are a major index analog?

3. Generalizing properties of χ to χ̃?

(i) degree d , monic, no constant term

(ii) integer coefficients, alternating in sign

(iii) second coefficient is the number of edges

(iv) linear coefficient is the number of acyclic orientations with a
unique sink at some fixed vertex
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The second weighting
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Lots of “weighted Ehrhart theories” have been studied!

ehrP(ω, n) =
∑

x∈nP∩Zd

ω(x)

• [Stapledon ’08] piecewise linear functions

• [Chapoton ’16] “q-analog” Ehrhart theory, ω(x) = qλ(x)

• [Ludwig-Silverstein ’17] tensor valuations
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Our setup

Let ω : Rd → R be a polynomial of degree m and let P ⊆ Rd be a
d-dimensional rational polytope with denominator q. The
weighted Ehrhart series

Ehr(P, ω; z) :=
∑
n≥0

 ∑
x∈nP∩Zd

ω(x)

 zn

is a rational function of the form

Ehr(P, ω; z) =
h∗P,ω(z)

(1− zq)d+m+1
,

where h∗P,ω(z) is a polynomial of degree < q(d +m + 1).
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What changes?

The weighted h∗-polynomial does not have to have nonnegative
coefficients anymore!

Example: For P = [0, 1],

Ehr(P, 1; z) =
1

(1− z)2
and Ehr(P, x2; z) =

z2 + z

(1− z)4
,

so Ehr(P, x2 + 1; z) =
2z2 − z + 1

(1− z)4
.

For this reason (not introducing negatives while getting a LCD)
we will focus on homogeneous weight polynomials. But this is
not enough – negative coefficients will still pop up!
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Positive results

When ω is a product of linear forms. . .

Lemma. If ∆ = conv{v1, . . . , vd+1} ⊆ Rd is a d-dimensional
half-open rational simplex with denominator q and ω is a product
of m linear forms ℓ1 · · · ℓm,

h∗∆,w (z) =
∑

x∈Π(∆)∩Zd+1

zxd+1
∑

I1⊎...⊎Id+1=[m]

∏
i∈I1

ℓi (v1) · · ·
∏

i∈Id+1

ℓi (vd+1)
r+1∏
j=1

A
λj (x)

|Ij | (zq)

 ,

where x = λ1(x)

(
qv1
q

)
+ · · ·+ λd+1(x)

(
qvd+1

q

)
.
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Positive results

Positive consequences!

Theorem 1 (Nonnegativity). If ω is a homogeneous sum of
products of linear forms that are nonnegative on the rational
polytope P, then h∗P,ω(z) has nonnegative coefficients.
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Positive results

Positive consequences, continued

Theorem 2 (Monotonicity). Let P ⊆ Q be rational polytopes
with denominators δ(P) and δ(Q), respectively. If g is any
common multiple of δ(P) and δ(Q) and ω is a homogeneous
(degree m) sum of products of linear forms that are nonnegative
on Q, then

(1 + zδ(P) + · · ·+ zg−δ(P))dim(P)+m+1h∗P,ω(z) ≤

(1 + zδ(Q) + · · ·+ zg−δ(Q))dim(Q)+m+1h∗Q,ω(z),

coefficient-wise.
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Negative results

Do we really need these assumptions?

ω being nonnegative on P (rather than requiring that each ℓi
be nonnegative) is not enough!

▶ P = conv{(0, 0), (1, 0), (0, 1)}
▶ ω(x) = (2x1 − x2)

2(2x2 − x1)
2

▶ h∗P,ω(z) = z4 − 6z3 + 81z2 + 8z

There is also a 20-dimensional counterexample for ω just the
square of a linear form.
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Negative results

1. E. Bajo, R. Davis, J. A. De Loera, A. Garber, S. Garzón Mora, K. Jochemko,
and J. Yu. Weighted Ehrhart Theory: Extending Stanley’s nonnegativity
theorem. (arXiv:2303.09614)

2. F. Chapoton. q-analogues of Ehrhart polynomials. Proc. Edinb. Math. Soc.,
(2) 59 (2016), no. 2, 339–358.

3. A. Garver, S. Grosser, J. Matherne, and A. Morales. Counting linear extensions
of posets with determinants of hook lengths. SIAM Journal of Discrete Math
(SIDMA), Vol 35 (2021), 205-233.

4. R. P. Stanley. A symmetric function generalization of the chromatic polynomial
of a graph. Adv. Math., 111(1):166–194, 1995.

5. N. A. Loehr and G. S. Warrington. A rooted variant of Stanley’s chromatic
symmetric function. (arXiv:2206.05392)

Thank you!! :)
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