Weighted Ehrhart Theories

Esme Bajo
University of California, Berkeley

September 12, 2023

Outline

1. Background (pretalk)

- Permutations
- Posets
- Graphs

2. Classical Ehrhart theory

- Lattice polytopes
- Rational polytopes
- Combinatorial connections

3. The first weighting

- Positive results
- Negative results

4. The second weighting

- q-analog Ehrhart theory
- Combinatorial connections

Permutation statistics

For $\pi=\pi_{1} \pi_{2} \ldots \pi_{d}$ a permutation:

$$
\underline{3} 15 \underline{7} \underline{4} 26
$$

- $\operatorname{Des}(\pi):=\left\{i \in[d-1]: \pi_{i}>\pi_{i+1}\right\}$
$\{1,4,5\}$
- $\operatorname{des}(\pi):=|\operatorname{Des}(\pi)|$

3

- $\operatorname{maj}(\pi):=\sum_{i \in \operatorname{Des}(\pi)} i$
$1+4+5=10$
- $\operatorname{comaj}(\pi):=\sum_{i \in \operatorname{Des}(\pi)}(d-i)$
$6+3+2=11$

Eulerian polynomials

The d th Eulerian polynomial is $A_{d}(z):=\sum_{\pi \in S_{d}} z^{\operatorname{des}(\pi)}$.

$$
\begin{array}{lll}
123 \underline{3} 2 & \underline{3} 21 & \\
\underline{2} 13 & & \\
2 \underline{3} 1 & & A_{3}(z)=1+4 z+z^{2} \\
\underline{3} 12 &
\end{array}
$$

A generating function involving Eulerian polynomials:

$$
\sum_{n \geq 0}(n+1)^{d} z^{n}=\frac{A_{d}(z)}{(1-z)^{d+1}}
$$

Generalized Eulerian polynomials

Rational expressions of generating functions: A sequence $f(n)$ is given by a polynomial of degree $\leq d$ if and only if

$$
\sum_{n \geq 0} f(n) z^{n}=\frac{h(z)}{(1-z)^{d+1}}
$$

for some polynomial $h(z)$ of degree $\leq d$.
For $\lambda \in[0,1]$, let $A_{n}^{\lambda}(z)$ be the polynomial defined by

$$
\sum_{n \geq 0}(n+\lambda)^{d} z^{n}=\frac{A_{d}^{\lambda}(z)}{(1-z)^{d+1}}
$$

$A_{d}^{\lambda}(z)$ has nonnegative coefficients.

q-binomial coefficients

The q-integer:

$$
[n]_{q}=1+q+q^{2}+\cdots+q^{n-1}
$$

The q-binomial coefficient:

$$
\left[\begin{array}{c}
k+\ell \\
k
\end{array}\right]_{q}:=\frac{[k+\ell]_{q}!}{[k]_{q}![\ell]_{q}!}=\frac{[k+\ell]_{q}[k+\ell-1]_{q} \cdots[k+1]_{q}}{[\ell]_{q}[\ell-1]_{q} \cdots[1]_{q}}
$$

q-analog of Pascal's identity:

$$
\left[\begin{array}{c}
k+\ell \\
k
\end{array}\right]_{q}=q^{k}\left[\begin{array}{c}
k+(\ell-1) \\
k
\end{array}\right]_{q}+\left[\begin{array}{c}
(k-1)+\ell \\
k-1
\end{array}\right]_{q}
$$

q-binomial coefficients, continued

A combinatorial interpretation:

$$
\left[\begin{array}{c}
k+\ell \\
k
\end{array}\right]_{q}=\sum_{\mu \in \mathcal{R}(k, \ell)} q^{|\mu|}
$$

Negative q-binomial theorem:

$$
\frac{1}{(1-z)(1-q z)\left(1-q^{2} z\right) \cdots\left(1-q^{d} z\right)}=\sum_{n \geq 0}\left[\begin{array}{c}
n+d \\
d
\end{array}\right]_{q} z^{n}
$$

Posets

$\Pi=(P, \preceq)$ such that for all $p, q, r \in P:$
Hasse diagram:

- $p \preceq p$
- $p \preceq q$ and $q \preceq p \Longrightarrow p=q$
- $p \preceq q$ and $q \preceq r \Longrightarrow p \preceq r$
q covers p if $p \prec q$ and if there is no r such that $p \prec r \prec q$.

Linear extensions and natural labelings

Fix a labeling of Π, i.e. a bijection $\omega: P \rightarrow[n]$. The linear extensions of the labeled poset are the order-preserving maps

$$
\mathcal{L}(\Pi):=\left\{\sigma \in S_{n}: \sigma(\omega(p))<\sigma(\omega(q)) \text { if } p \prec q\right\} .
$$

A labeling is natural if the identity is a linear extension.

An example!

Natural labeling:

Linear extensions:

$$
\mathcal{L}(\Pi)=\{1234,1243\}
$$

Proper colorings

A proper n-coloring of a graph $G=(V, E)$ is a function $c: V \rightarrow[n]$ such that

$$
c(v) \neq c(w) \text { if }\{v, w\} \in E .
$$

The chromatic number $\chi(G)$ of G is the smallest positive integer such that G has a proper $\chi(G)$-coloring.

The chromatic polynomial

The number of proper n-colorings of a graph G agrees with a polynomial of degree $|V|$, called the chromatic polynomial $\chi_{G}(n)$ of G.

$$
\chi_{G}(n)=\sum_{k=\chi(G)}^{|V|} \alpha_{k} \cdot n(n-1) \cdots(n-k+1)
$$

where α_{k} is the number of partitions of V into k independent sets.

The chromatic polynomial of a tree

If T is a tree on d vertices, then $\chi_{T}(n)=n(n-1)^{d-1}$.

$$
n(n-1)^{d-2}
$$

The chromatic symmetric function

Stanley's symmetric function generalization:

$$
X_{G}\left(x_{1}, x_{2}, \ldots\right)=\sum_{\substack{\text { proper colorings } \\ c: V \rightarrow \mathbb{Z}^{+}}} x_{1}^{\left|c^{-1}(1)\right|} x_{2}^{\left|c^{-1}(2)\right|} x_{3}^{\left|c^{-1}(3)\right|} \ldots
$$

$$
X_{P_{4}}\left(x_{1}, x_{2}, 0,0, \ldots\right)=2 x_{1}^{2} x_{2}^{2}
$$

$$
x_{S_{4}}\left(x_{1}, x_{2}, 0,0, \ldots\right)=x_{1}^{3} x_{2}+x_{1} x_{2}^{3}
$$

The chromatic symmetric function in different bases

(Augmented) monomial basis

$$
X_{G}\left(x_{1}, x_{2}, \ldots\right)=\sum_{\lambda \vdash|V|} \alpha_{\lambda} \widetilde{m}_{\lambda}
$$

where $\alpha_{\lambda}=$ number of partitions of type λ of V into independent sets and $\widetilde{m}_{\lambda}=r_{1}!r_{2}!\cdots m_{\lambda}\left(r_{i}=\right.$ number of parts of λ equal to $\left.i\right)$

Power sum basis

$$
X_{G}\left(x_{1}, x_{2}, \ldots\right)=\sum_{S \subseteq E}(-1)^{|S|} p_{\lambda(S)}
$$

where $\lambda(S)=$ vector of sizes of connected components of (V, S)
Elementary basis

$$
X_{G}\left(x_{1}, x_{2}, \ldots\right)=\sum_{\lambda \vdash|V|} c_{\lambda} e_{\lambda}
$$

is such that $\sum_{\substack{\lambda \\ j \text { wathts }}} c_{\lambda}=$ number of acyclic orientations of G with j sinks

Conjectures about $X_{G}\left(x_{1}, x_{2}, \ldots\right)$

1. [Stanley] For trees S and $T, X_{S}=X_{T} \Longleftrightarrow S \cong T$.
2. [Stanley] Chromatic symmetric functions of claw-free graphs are Schur positive.
3. [Stanley-Stembridge] Chromatic symmetric functions of incomparability graphs of $(3+1)$-free posets are e-positive.

Specializations of $X_{G}\left(x_{1}, x_{2}, \ldots\right)$

$$
X_{G}\left(x_{1}, x_{2}, \ldots\right)
$$

Conjecture. (Loehr-Warrington) The principal specialization already distinguishes non-isomorphic trees!

$$
X_{G}(\underbrace{1, \ldots, 1}_{n \text { times }}, 0,0, \ldots)=\chi_{G}(n)
$$

2. Classical Ehrhart theory

- Lattice polytopes
- Rational polytopes
- Combinatorial connections

3. The first weighting

- Positive results
- Negative results

4. The second weighting

- q-analog Ehrhart theory
- Combinatorial connections

Lattice polytopes

A polytope is the convex hull of finitely many points in \mathbb{R}^{d}, equivalently a bounded intersection of finitely many halfspaces.

For P a lattice polytope (i.e. with vertices in \mathbb{Z}^{d}), we consider

$$
\operatorname{ehr}_{P}(n)=\left|n P \cap \mathbb{Z}^{d}\right|
$$

Example:

$$
\begin{aligned}
\operatorname{ehr}_{\Delta}(n) & =\left|\left\{(x, y) \in \mathbb{Z}^{2}: x, y \geq 0, x+y \leq n\right\}\right| \\
& =\binom{n+2}{2}=\frac{1}{2} n^{2}+\frac{3}{2} n+1
\end{aligned}
$$

Ehrhart polynomials and series

For any d-dimensional lattice polytope $P \subseteq \mathbb{R}^{d}$, $\operatorname{ehr}_{P}(n)$ is a polynomial of degree d, called the Ehrhart polynomial.

The Ehrhart series of P is its generating function

$$
\operatorname{Ehr}_{P}(z)=\sum_{n \geq 0} \operatorname{ehr}_{P}(n) z^{n}
$$

Observe

$$
\operatorname{Ehr}_{P}(z)=\sum_{x \in \operatorname{cone}(P) \cap \mathbb{Z}^{d+1}} z^{x_{d+1}}
$$

where cone $(P)=\{(t x, t): x \in P, t \geq 0\}$.

Ehrhart theory of unimodular simplices

If Δ is a d-dimensional unimodular simplex with k missing facets (for some $0 \leq k \leq d+1$),

$$
\operatorname{Ehr}_{\Delta}(z)=\frac{z^{k}}{(1-z)^{d+1}}
$$

Proof. The unique point in the "fundamental parallelepiped" of cone(Δ) is

$$
\sum\binom{v_{i}}{i}
$$

where the sum ranges over the k vertices of Δ that are opposite the missing facets.
cone((1, 2]) :

Ehrhart theory of general lattice simplices

$\operatorname{Ehr}_{\Delta}(z)=\frac{\sum_{x \in \Pi(\Delta) \cap \mathbb{Z}^{d+1}} z^{x_{d+1}}}{(1-z)^{d+1}}$

$$
=\frac{2 z}{(1-z)^{2}}
$$

h^{*}-polynomials of lattice polytopes

1. [Nonnegativity] If P is a d-dimensional lattice polytope,

$$
\operatorname{Ehr}_{P}(z)=\frac{h_{P}^{*}(z)}{(1-z)^{d+1}}
$$

where $h_{P}^{*}(z)$ is a polynomial with nonnegative integer coefficients, called the h^{*}-polynomial.
2. [Monotonicity] If P, Q are lattice polytopes and $P \subseteq Q$,

$$
h_{P}^{*}(z) \leq h_{Q}^{*}(z)
$$

coefficient-wise.

Rational polytopes and Ehrhart quasipolynomials

If $P \subseteq \mathbb{R}^{d}$ has rational vertices, say in $\frac{1}{q} \mathbb{Z}^{d}$ for $q \geq 1$ minimal,

$$
\left|n P \cap \mathbb{Z}^{d}\right|
$$

agrees with a quasipolynomial in n whose period divides q.

$$
\left|n P \cap \mathbb{Z}^{d}\right|= \begin{cases}\frac{9}{8} n^{2}+\frac{9}{4} n+1 & \text { if } n \equiv 0 \bmod 2 \\ \frac{9}{8} n^{2}+\frac{3}{2} n+\frac{3}{8} & \text { if } n \equiv 1 \bmod 2\end{cases}
$$

Ehrhart series of rational simplices

$\operatorname{Ehr}_{\Delta}(z)=\frac{\sum_{x \in \Pi(\Delta) \cap \mathbb{Z}^{d+1}} z^{x_{d+1}}}{\left(1-z^{q}\right)^{d+1}}$

$$
=\frac{1+2 z+3 z^{2}+2 z^{3}}{\left(1-z^{2}\right)^{2}}
$$

h^{*}-polynomials of rational polytopes

1. [Nonnegativity] If P is a d-dimensional rational polytope with denominator q,

$$
\operatorname{Ehr}_{P}(z)=\frac{h_{P}^{*}(z)}{\left(1-z^{q}\right)^{d+1}}
$$

where $h_{P}^{*}(z)$ is a polynomial with nonnegative integer coefficients, called the h^{*}-polynomial.
2. [Monotonicity] If P, Q are rational polytopes of the same denominator and $P \subseteq Q$,

$$
h_{P}^{*}(z) \leq h_{Q}^{*}(z)
$$

coefficient-wise.

Unit cubes

The d-dimensional unit cube has a disjoint unimodular triangulation

$$
[0,1]^{d}=\bigcup_{\sigma \in S_{d}}\left\{0 \leq x_{\sigma_{1}} \leq \cdots \leq x_{\sigma_{d}} \leq 1: x_{\sigma_{i}}<x_{\sigma_{i+1}} \text { if } i \in \operatorname{Des}(\sigma)\right\}
$$

so

$$
\begin{aligned}
\operatorname{Ehr}_{[0,1]^{d}}(z) & =\frac{\sum_{\sigma \in S_{d}} z^{\operatorname{des}(\sigma)}}{(1-z)^{d+1}} \\
\Longrightarrow \sum_{n \geq 0}(n+1)^{d} z^{n} & =\frac{A_{d}(z)}{(1-z)^{d+1}}
\end{aligned}
$$

Order polytopes

The order polytope of a poset $\Pi=([d], \preceq)$ is

$$
\mathcal{O}(\Pi)=\left\{\left(x_{1}, \ldots, x_{d}\right) \in[0,1]^{d}: x_{i} \leq x_{j} \text { if } i \preceq j\right\}
$$

which has a disjoint unimodular triangulation

$$
\mathcal{O}(\Pi)=\bigcup_{\sigma \in \mathcal{L}(\Pi)}\left\{0 \leq x_{\sigma_{1}} \leq \ldots \leq x_{\sigma_{d}} \leq 1, x_{\sigma_{i}}<x_{\sigma_{i+1}} \text { if } i \in \operatorname{Des}(\sigma)\right\}
$$

Therefore,

$$
\operatorname{Ehr}_{\mathcal{O}(\Pi)}(z)=\frac{\sum_{\sigma \in \mathcal{L}(\Pi)} z^{\operatorname{des}(\sigma)}}{(1-z)^{d+1}}
$$

Order polytopes, continued

The Negative Binomial Theorem implies

$$
\operatorname{ehr}_{\mathcal{O}(\Pi)}(n)=\sum_{\sigma \in \mathcal{L}(\Pi)}\binom{n+d-\operatorname{des}(\sigma)}{d}
$$

and Ehrhart-Macdonald reciprocity implies

$$
\operatorname{ehr}_{\mathcal{O}(\Pi)^{\circ}}(n)=\sum_{\sigma \in \mathcal{L}(\Pi)}\binom{n+\operatorname{des}(\sigma)-1}{d}
$$

Proper colorings as lattice points

A coloring $c:[d] \rightarrow[n]$ of $G=([d], E)$ can be thought of as a point

$$
(c(1), \ldots, c(d)) \in \mathbb{Z}^{d}
$$

The proper n-colorings of G are points in

$$
\left((0, n+1)^{d} \cap \mathbb{Z}^{d}\right) \backslash\left(\bigcup \mathcal{H}_{G}\right)
$$

where \mathcal{H}_{G} is the graphical hyperplane arrangement

$$
\mathcal{H}_{G}=\left\{x_{i}=x_{j}:\{i, j\} \in E\right\} .
$$

Proper colorings as lattice points, continued

Consider the path on two vertices, $P_{2}=0-0$

Proper colorings as lattice points, continued

$\left((0, n+1)^{d} \cap \mathbb{Z}^{d}\right) \backslash\left(\bigcup_{\mathcal{H}}^{G}\right)$ has a region for each acyclic orientation ρ of G, given by

$$
(0, n+1)^{d} \cap\left(\bigcap_{(i, j) \in \rho}\left\{x_{i}<x_{j}\right\}\right) .
$$

The region corresponding to ρ contains the proper colorings of G that "obey" ρ, i.e. for which $c(i)<c(j)$ if $(i, j) \in \rho$.

The chromatic polynomial is a sum of Ehrhart polynomials

Each region is the $(n+1)$ st dilate of the open order polytope of the poset induced by ρ, which we call Π_{ρ}, therefore

$$
\begin{aligned}
\chi_{G}(n) & =\sum_{\rho \in \mathcal{A}(G)} \operatorname{ehr}_{\mathcal{O}\left(\Pi_{\rho}\right)^{\circ}}(n+1) \\
& =\sum_{\rho \in \mathcal{A}(G)} \sum_{\sigma \in \mathcal{L}\left(\Pi_{\rho}\right)}\binom{n+\operatorname{des}(\sigma)}{d} .
\end{aligned}
$$

The linear extensions are of a natural labeling of the poset, not the vertex labels.

An example: the path on 3 vertices
Acyclic Orientation $\rho \mid$ Induced Poset Π_{ρ} Linear Extensions $\mathcal{L}\left(\Pi_{\rho}\right)$

$\cdots \longrightarrow$!	123
$0 \longrightarrow 0$ -	\bigcirc	123, 213
$0-\ldots$	V	123, $1 \underline{3} 2$
\longrightarrow	!	123
$\chi_{P_{3}}(n)=4\binom{n}{3}+2\binom{n+1}{3}=n(n-1)^{2}$		

Leading questions

1. What kind of "weights" can we introduce to the lattice so that classical Ehrhart results will generalize?
2. Will meaningful combinatorial connections (to posets, graphs, etc.) arise in the weighted versions?

The first weighting

Alexey Garber
University of Texas, Rio Grande Valley

Sofía Garzón Mora
Freie Universität
Berlin

Katharina Jochemko
KTH Royal Institute of Technology

Josephine Yu

Georgia Institute of Technology

Lots of "weighted Ehrhart theories" have been studied!

$$
\operatorname{ehr}_{P}(\omega, n)=\sum_{x \in n P \cap \mathbb{Z}^{d}} \omega(x)
$$

- [Stapledon '08] piecewise linear functions
- [Chapoton '16] " q-analog" Ehrhart theory, $\omega(x)=q^{\lambda(x)}$
- [Ludwig-Silverstein '17] tensor valuations

Our setup

Let $\omega: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a polynomial of degree m and let $P \subseteq \mathbb{R}^{d}$ be a d-dimensional rational polytope with denominator q. The weighted Ehrhart series

$$
\operatorname{Ehr}(P, \omega ; z):=\sum_{n \geq 0}\left(\sum_{x \in n P \cap \mathbb{Z}^{d}} \omega(x)\right) z^{n}
$$

is a rational function of the form

$$
\operatorname{Ehr}(P, \omega ; z)=\frac{h_{P, \omega}^{*}(z)}{\left(1-z^{q}\right)^{d+m+1}}
$$

where $h_{P, \omega}^{*}(z)$ is a polynomial of degree $<q(d+m+1)$.

What changes?

The weighted h^{*}-polynomial does not have to have nonnegative coefficients anymore!

Example: For $P=[0,1]$,

$$
\begin{aligned}
\operatorname{Ehr}(P, 1 ; z)=\frac{1}{(1-z)^{2}} & \text { and } \operatorname{Ehr}\left(P, x^{2} ; z\right)=\frac{z^{2}+z}{(1-z)^{4}} \\
& \text { so } \operatorname{Ehr}\left(P, x^{2}+1 ; z\right)=\frac{2 z^{2}-z+1}{(1-z)^{4}}
\end{aligned}
$$

For this reason (not introducing negatives while getting a LCD) we will focus on homogeneous weight polynomials. But this is not enough - negative coefficients will still pop up!

When ω is a product of linear forms...

Lemma. If $\Delta=\operatorname{conv}\left\{v_{1}, \ldots, v_{d+1}\right\} \subseteq \mathbb{R}^{d}$ is a d-dimensional half-open rational simplex with denominator q and ω is a product of m linear forms $\ell_{1} \cdots \ell_{m}$,

$$
\begin{aligned}
& h_{\Delta, w}^{*}(z)=\sum_{x \in \Pi(\Delta) \cap \mathbb{Z}^{d+1}}\left(z^{x_{d+1}} \sum_{\mathrm{l}_{1} \uplus \ldots \not \|_{d+1}=[m]} \prod_{i \in l_{1}} \ell_{i}\left(v_{1}\right) \cdots \prod_{\left.i \in\right|_{d+1}} \ell_{i}\left(v_{d+1}\right) \prod_{j=1}^{r+1} A_{\left|l_{j}\right|}^{\lambda_{j}(x)}\left(z^{q}\right)\right) \\
& \quad \text { where } x=\lambda_{1}(x)\binom{q v_{1}}{q}+\cdots+\lambda_{d+1}(x)\binom{q v_{d+1}}{q} .
\end{aligned}
$$

Positive consequences!

Theorem 1 (Nonnegativity). If ω is a homogeneous sum of products of linear forms that are nonnegative on the rational polytope P, then $h_{P, \omega}^{*}(z)$ has nonnegative coefficients.

Positive consequences, continued

Theorem 2 (Monotonicity). Let $P \subseteq Q$ be rational polytopes with denominators $\delta(P)$ and $\delta(Q)$, respectively. If g is any common multiple of $\delta(P)$ and $\delta(Q)$ and ω is a homogeneous (degree m) sum of products of linear forms that are nonnegative on Q, then

$$
\begin{aligned}
& \left(1+z^{\delta(P)}+\cdots+z^{g-\delta(P)}\right)^{\operatorname{dim}(P)+m+1} h_{P, \omega}^{*}(z) \leq \\
& \left(1+z^{\delta(Q)}+\cdots+z^{g-\delta(Q)}\right)^{\operatorname{dim}(Q)+m+1} h_{Q, \omega}^{*}(z)
\end{aligned}
$$

coefficient-wise.

Do we really need these assumptions?
ω being nonnegative on P (rather than requiring that each ℓ_{i} be nonnegative) is not enough!

$$
\begin{aligned}
& \nabla P=\operatorname{conv}\{(0,0),(1,0),(0,1)\} \\
& \nabla \omega(x)=\left(2 x_{1}-x_{2}\right)^{2}\left(2 x_{2}-x_{1}\right)^{2} \\
& \nabla h_{P, \omega}^{*}(z)=z^{4}-6 z^{3}+81 z^{2}+8 z
\end{aligned}
$$

There is also a 20-dimensional counterexample for ω just the square of a linear form.

The second weighting

Matthias Beck
San Francisco State University

Andrés R. Vindas Meléndez
University of California, Berkeley

The big picture

Stanley's chromatic symmetric function $X_{G}\left(x_{1}, x_{2}, \ldots\right)$:

- Distinguishes some (all?) non-isomorphic trees

Chromatic polynomial $\chi_{G}(n)$:

- Polytopes perspective
- Deletion-contraction
- Does not distinguish trees

$$
X_{G}\left(x_{1}, x_{2}, \ldots\right)
$$

q-analog Ehrhart theory

Theorem. (Chapoton) If $P \subseteq \mathbb{R}^{d}$ is a d-dimensional lattice polytope and $\lambda: \mathbb{Z}^{d} \rightarrow \mathbb{Z}$ is a linear form that is nonnegative on the vertices of P,

$$
\operatorname{ehr}_{P}^{\lambda}(q, n)=\sum_{x \in n P \cap \mathbb{Z}^{d}} q^{\lambda(x)}
$$

agrees with a polynomial $\widetilde{\text { ehr }}^{\lambda}(q, x) \in \mathbb{Q}(q)[x]$, evaluated at

$$
x=[n]_{q}:=1+q+q^{2}+\cdots+q^{n-1} .
$$

If $\lambda\left(\left(x_{1}, \ldots, x_{d}\right)\right)=x_{1}+\cdots+x_{d}$, we omit it.

We are ignoring a condition called "genericity" that is needed, but we will not have to worry about it for the polytopes we are working with!

q-analog Ehrhart series of lattice simplices

$\operatorname{Ehr}_{\Delta}^{\lambda}(q, z)=\frac{\sum_{x \in \Pi(\Delta) \cap \mathbb{Z}^{d+1}} q^{\lambda\left(\left(x_{1}, \ldots, x_{d}\right)\right)} z^{x_{d+1}}}{\prod_{v}\left(1-q^{\lambda(v) z)}\right.}$

$$
=\frac{q^{2} z+q^{3} z}{(1-q z)\left(1-q^{3} z\right)}
$$

An example of ehr!

$$
P=\operatorname{conv}\{(0,0),(1,0),(1,1),(2,1)\}
$$

$$
\begin{aligned}
\operatorname{Ehr}_{p}(q, z) & =\frac{1}{(1-z)(1-q z)\left(1-q^{2} z\right)}+\frac{q^{3} z}{(1-q z)\left(1-q^{2} z\right)\left(1-q^{3} z\right)} \\
& =\frac{1-q^{3} z^{2}}{(1-z)(1-q z)\left(1-q^{2} z\right)\left(1-q^{3} z\right)}
\end{aligned}
$$

$$
\widetilde{\operatorname{ehr}}_{P}(q, x)=\frac{q^{4}-q^{3}}{q+1} x^{3}+\frac{3 q^{3}-q^{2}}{q+1} x^{2}+\frac{3 q^{2}+q}{q+1} x+1
$$

Properties of $\operatorname{Ehr}_{P}^{\lambda}(q, z)$ and $\widetilde{\operatorname{ehr}}^{\lambda}(q, x)$
(i) $\operatorname{Ehr}_{P}^{\lambda}(1, z)=\operatorname{Ehr}(z)$ and $\widetilde{\operatorname{ehr}}_{p}^{\lambda}(1, x)=\operatorname{ehr} p(x)$
(ii) The denominator of $\operatorname{Ehr}_{P}^{\lambda}(q, z)$ divides $\prod_{\substack{\text { vertices } \\ v \text { of } P}}\left(1-q^{\lambda(v)} z\right)$.
(iii) $\operatorname{deg}\left(\widetilde{\operatorname{ehr}}_{p}^{\lambda}(q, x)\right)=\max _{v} \lambda(v)$
(iv) The poles of the coefficients of $\widetilde{\operatorname{ehr}}^{\lambda}(q, x)$ are roots of unity of order at most $\max _{v} \lambda(v)$.

q-analog Ehrhart theory of unit cubes

Using the same triangulation of the d-dimensional unit cube

$$
[0,1]^{d}=\bigcup_{\sigma \in S_{d}}\left\{0 \leq x_{\sigma_{1}} \leq \cdots \leq x_{\sigma_{d}} \leq 1: x_{\sigma_{i}}<x_{\sigma i+1} \text { if } i \in \operatorname{Des}(\sigma)\right\}
$$

we compute its q-analog Ehrhart series

$$
\operatorname{Ehr}_{[0,1]^{d}}(q, z)=\frac{\sum_{\sigma \in S_{d}} q^{\operatorname{comaj}(\sigma)} z^{\operatorname{des}(\sigma)}}{(1-z)(1-q z) \cdots\left(1-q^{d} z\right)}
$$

This yields the Euler-Mahonian joint distribution of (des, maj):

$$
\sum_{n \geq 0}[n+1]_{q}^{d} z^{n}=\frac{\sum_{\sigma \in S_{d}} q^{\operatorname{maj}(\sigma)} z^{\operatorname{des}(\sigma)}}{(1-z)(1-q z) \cdots\left(1-q^{d} z\right)}
$$

q-analog Ehrhart theory of order polytopes

The q-analog Ehrhart series of the order polytope $\mathcal{O}(\Pi)$ is

$$
\operatorname{Ehr}_{\mathcal{O}(\Pi)}(q, z)=\frac{\sum_{\sigma \in \mathcal{L}(\Pi)} q^{\operatorname{comaj}(\sigma) z^{\operatorname{des}(\sigma)}}}{(1-z)(1-q z) \cdots\left(1-q^{d} z\right)} .
$$

Therefore,

$$
\operatorname{ehr}_{\mathcal{O}(\Pi)}(q, n)=\sum_{\sigma \in \mathcal{L}(\Pi)} q^{\operatorname{comaj}(\sigma)}\left[\begin{array}{c}
n+d-\operatorname{des}(\sigma) \\
d
\end{array}\right]_{q}
$$

Observe $[n+k]_{q}=q^{k}[n]_{q}+[k]_{q}$ and $[n-k]_{q}=\frac{[n]_{q}-[k]_{q}}{q^{k}}$, so $\widetilde{\operatorname{ehr}}_{\mathcal{O}(\Pi)}(q, x)$ has degree d and $[d]_{q}!\cdot \widetilde{\operatorname{ehr}}_{\mathcal{O}(\Pi)}(q, x) \in \mathbb{Z}(q)[x]$.

A q-analog connection to graph colorings

$$
X_{G}\left(q, q^{2}, \ldots, q^{n}, 0, \ldots\right)=\sum_{\substack{\text { proper } \\ c:[d]] \rightarrow[n]}} q^{\left|c^{-1}(1)\right|+2\left|c^{-1}(2)\right|+\cdots+n\left|c^{-1}(n)\right|}
$$

counts q raised to the sum of the colors of each vertex for each proper coloring, which is

$$
\chi_{G}(q, n):=\sum_{\rho \in \mathcal{A}(G)} \operatorname{ehr}_{\mathcal{O}\left(\Pi_{\rho}\right)^{\circ}}(q, n+1) .
$$

Therefore,

$$
X_{G}\left(q, q^{2}, \ldots, q^{n}, 0, \ldots\right)=\sum_{\rho \in \mathcal{A}(G)} \sum_{\sigma \in \mathcal{L}\left(\Pi_{\rho}\right)} q^{\left(\frac{d+1}{2}\right)-\operatorname{comaj}(\sigma)}\left[\begin{array}{c}
n+\operatorname{des}(\sigma) \\
d
\end{array}\right]_{q}
$$

A (sort of boring) example

The acyclic orientations of the complete graph K_{d} are the total orderings of the vertices, which each have the chain as their induced poset.

$$
\chi K_{d}(q, n)=d!\cdot q^{\binom{d+1}{2}}\left[\begin{array}{l}
n \\
d
\end{array}\right]_{q}
$$

$$
\mathcal{L}\left(\Pi_{\rho}\right)=\{1234\}
$$

Some examples of $\chi_{T}(q, n)$ in the " h^{*}-basis"

$$
8 q^{10}\left[\begin{array}{l}
n \\
4
\end{array}\right]_{q}+\left(4 q^{9}+6 q^{8}+4 q^{7}\right)\left[\begin{array}{c}
n+1 \\
4
\end{array}\right]_{q}+2 q^{6}\left[\begin{array}{c}
n+2 \\
4
\end{array}\right]_{q}
$$

The q-analog chromatic polynomial

There exists a polynomial $\widetilde{\chi}_{G}(q, x) \in \mathbb{Q}(q)[x]$, which we call the q-analog chromatic polynomial, such that

$$
\tilde{\chi}_{G}\left(q,[n]_{q}\right)=\chi_{G}(q, n) \quad\left(=X_{G}\left(q, q^{2},, q^{n}, 0, \ldots\right)\right) .
$$

Theorem.

$$
\tilde{\chi}_{G}(q, x)=q^{d} \sum_{\text {flats } S \subseteq E} \mu(\varnothing, S) \prod_{\lambda_{i} \in \lambda(S)} \frac{1-(1+(q-1) x)^{\lambda_{i}}}{1-q^{\lambda_{i}}}
$$

Some examples of $[d]_{q}!\cdot \tilde{\chi}_{T}(q, x)$

$$
\begin{aligned}
& \left(2 q^{8}+4 q^{7}+6 q^{6}+4 q^{5}+8 q^{4}\right) x^{4}+ \\
& \left(-6 q^{8}-10 q^{7}-18 q^{6}-18 q^{5}-20 q^{4}\right) x^{3}+ \\
& \left(4 q^{8}+10 q^{7}+20 q^{6}+22 q^{5}+16 q^{4}\right) x^{2}+ \\
& \left(-4 q^{7}-8 q^{6}-8 q^{5}-4 q^{4}\right) x
\end{aligned}
$$

$$
\begin{aligned}
& \left(q^{9}+6 q^{7}+4 q^{6}+5 q^{5}+8 q^{4}\right) x^{4}+ \\
& \left(-q^{9}-3 q^{8}-14 q^{7}-14 q^{6}-21 q^{5}-19 q^{4}\right) x^{3}+ \\
& \left(3 q^{8}+12 q^{7}+18 q^{6}+24 q^{5}+15 q^{4}\right) x^{2}+ \\
& \left(-4 q^{7}-8 q^{6}-8 q^{5}-4 q^{4}\right) x
\end{aligned}
$$

Conjecture. The leading coefficient distinguishes non-isomorphic trees.

The leading coefficient

Theorem. The leading coefficient of $[d]_{q}!\cdot \widetilde{\chi}_{G}(q, x)$ is

$$
\sum_{\rho \in \mathcal{A}(G)} \sum_{\sigma \in \mathcal{L}\left(\Pi_{\rho}\right)} q^{\operatorname{maj}(\sigma)}
$$

For certain "tree posets" Π and permutation statistics stat,

$$
e_{q}^{\text {stat }}(\Pi)=\sum_{\sigma \in \mathcal{L}(\Pi)} q^{\text {stat }(\sigma)}
$$

is well-studied:

- [Björner-Wachs] rooted tree posets, inv
- [Stanley] ribbon posets, inv
- [Peterson-Proctor] d-complete posets, maj
- [Garver-Grosser-Matherne-Morales, Park] mobile tree posets, maj and inv

Open questions!

1. Can these results on " q-analog number of linear extensions" of various tree posets be applied to distinguish the leading coefficients for certain classes of trees?
2. Atkinson gave an algorithm to efficiently compute the number of linear extensions of a tree poset, and
Garver-Grosser-Matherne-Morales generalized it for $e_{q}^{\text {inv }}$. Is there are a major index analog?
3. Generalizing properties of χ to $\widetilde{\chi}$?
(i) degree d, monic, no constant term
(ii) integer coefficients, alternating in sign
(iii) second coefficient is the number of edges
(iv) linear coefficient is the number of acyclic orientations with a unique sink at some fixed vertex

A reciprocity result

Theorem.

$$
(-q)^{d} \cdot \tilde{\chi}_{G}\left(1 / q,-q[n]_{q}\right)=\sum_{(\rho, c)} q^{\sum c(i)}
$$

where the sum ranges over all pairs of acyclic orientations ρ and weakly compatible colorings c (i.e. $c(i) \leq c(j)$ if $(i, j) \in \rho$).

Famous Case: $(-1)^{d} \cdot \chi_{G}(-1)=|\mathcal{A}(G)|$

The q, λ-analog chromatic polynomial

Chapoton's weighted Ehrhart theory applies to general linear forms λ, so we can also define:

$$
\begin{aligned}
\chi_{G}^{\lambda}(q, n): & =\sum_{\substack{\text { proper } \\
c:[d] \rightarrow[n]}} q^{\lambda_{1} c(1)+\cdots+\lambda_{d} c(d)} \\
& =\sum_{\rho \in \mathcal{A}(G)} \operatorname{ehr}_{\mathcal{O}\left(\Pi_{\rho}\right)^{\circ}}^{\lambda}(q, n+1)
\end{aligned}
$$

The bad news: For general $\lambda, \chi_{G}^{\lambda}$ is not a necessarily an instance of the chromatic symmetric function.

Why care about χ_{G}^{λ} (and $\left.\widetilde{\chi}_{G}^{\lambda}\right)$?
Deletion-Contraction Lemma. Let $G=([d], E)$ be a graph with $e=\{1,2\} \in E$. Then

$$
\chi_{G}^{\left(\lambda_{1}, \ldots, \lambda_{d}\right)}(q, n)=\chi_{G \backslash e}^{\left(\lambda_{1}, \ldots, \lambda_{d}\right)}(q, n)-\chi_{G / e}^{\left(\lambda_{1}+\lambda_{2}, \ldots, \lambda_{n}\right)}(q, n) .
$$

Conjecture. If S and T are non-isomorphic trees, then there exists λ for which

$$
\chi_{S}^{\lambda}(q, n) \neq \chi_{T}^{\lambda}(q, n) .
$$

1. E. Bajo, R. Davis, J. A. De Loera, A. Garber, S. Garzón Mora, K. Jochemko, and J. Yu. Weighted Ehrhart Theory: Extending Stanley's nonnegativity theorem. (arXiv:2303.09614)
2. F. Chapoton. q-analogues of Ehrhart polynomials. Proc. Edinb. Math. Soc., (2) 59 (2016), no. 2, 339-358.
3. A. Garver, S. Grosser, J. Matherne, and A. Morales. Counting linear extensions of posets with determinants of hook lengths. SIAM Journal of Discrete Math (SIDMA), Vol 35 (2021), 205-233.
4. R. P. Stanley. A symmetric function generalization of the chromatic polynomial of a graph. Adv. Math., 111(1):166-194, 1995.
5. N. A. Loehr and G. S. Warrington. A rooted variant of Stanley's chromatic symmetric function. (arXiv:2206.05392)

Thank you!! :)

